BQP seems bigger than P or BPP.
Useful problems become easy on a quantum device.
Going in the other direction: theoretical computer science can inform theoretical physics.
Computing a function on all possible inputs at the same time?
Consider searching for the zero $z$ of a function $\textrm{f}$
$\textrm{f}(z)=0$
$\textrm{f}(x)=1$ for $x\ne z$
$$ \begin{matrix} x_1 \\ x_2 \\ z \end{matrix} $$
possible inputs
$$ \begin{pmatrix} p_{x_1} \\ p_{x_2} \\ p_{z} \end{pmatrix} $$
initial state of the computer
$$ \hat{M} \begin{pmatrix} p_{x_1} \\ p_{x_2} \\ p_{z} \end{pmatrix} $$
executing the program
$$ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} $$
desired final state
$$ \begin{matrix} x_1 \\ x_2 \\ z \end{matrix} $$
possible inputs
$$ \begin{pmatrix} p_{x_1} \\ p_{x_2} \\ p_{z} \end{pmatrix} $$
initial state of the computer
$$ \hat{M} \begin{pmatrix} p_{x_1} \\ p_{x_2} \\ p_{z} \end{pmatrix} $$
executing the program
$$ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} $$
desired final state
$$ b \in \{0,1\} $$
classical bit
$$ \begin{pmatrix}p_0\\p_1\end{pmatrix} \in \mathbb{R}^2 $$ $$\scriptstyle p_0+p_1=1$$
classical probabilistic bit
$$ \begin{pmatrix}c_0\\c_1\end{pmatrix} \in \mathbb{C}^2$$ $$\scriptstyle |c_0|^2+|c_1|^2=1$$
quantum bit (qubit)
classical bit
classical probabilistic bit
quantum bit (qubit)
A rather "poor" Hamiltonian...
Can be twisted into something useful:
Can be twisted into something useful:
Full error correction
Can be twisted into something useful:
Full error correction
Can be twisted into something useful:
Full error correction
Desired:
\[\begin{aligned} A=\frac{|00\rangle+|11\rangle}{\sqrt{2}}\\ \end{aligned}\]The hardware generated:
90% chance for \[\begin{aligned} A=\frac{|00\rangle+|11\rangle}{\sqrt{2}}\\ \end{aligned}\] 10% chance for a bit flip on Bob's qubit \[\begin{aligned} C=\frac{|01\rangle+|10\rangle}{\sqrt{2}}\\ \end{aligned}\]Purification of more general resource states¹²
Clifford simulators orders of magnitude better than alternatives²
Rigorous theory bounds on purification performance³
Continuous evolution at one layer, followed by noisy Clifford circuit simulator...
... and discrete event simulators
... and support for symbolic algebra systems
... running on computational accelerators like GPUs
... support for other formalisms
... all of this, with auto-differentiation and reverse design
low-level hardware control,
resource purification,
optimization of error-correcting codes,
quantum network protocols,
and generally co-design across the layers of the technology stack.