Desired:
\[\begin{aligned} A=\frac{|00\rangle+|11\rangle}{\sqrt{2}}\\ \end{aligned}\]The hardware generated:
90% chance for \[\begin{aligned} A=\frac{|00\rangle+|11\rangle}{\sqrt{2}}\\ \end{aligned}\] 10% chance for a bit flip on Bob's qubit \[\begin{aligned} C=\frac{|01\rangle+|10\rangle}{\sqrt{2}}\\ \end{aligned}\]\[ \underbrace{A\otimes B\dots}_{n\text{ pairs}} \]
\[ \left.\begin{pmatrix}0\\1\\0\\\vdots\\0\end{pmatrix}\right\}\scriptsize \mathcal{O}(2^n) \]
\[ \left.\begin{bmatrix}+&XX&\\+&ZZ&\\&&\ddots\end{bmatrix}\right\}\scriptsize \mathcal{O}(n\times n) \]
\[ \underbrace{0011\dots}_{2n \text{ bits}} \]
traits = [Qubit(), Qubit(), Qumode()]
reg = Register(traits)
A register "stores" the states being simulated.
graph = grid([2,3])
registers = [...]
net = RegisterNet(graph, registers)
A "graph" of registers can represent a network.
initialize!(reg[1], X₁)
A register's slot can be initialized to an arbitrary state, e.g. $|x_1\rangle$ an eigenstate of $\hat{\sigma}_x$.
initialize!(reg[1], X₁)
initialize!(reg[2], Z₁)
apply!((reg[1], reg[2]), CNOT)
Arbitrary quantum gates or channels can be applied.
project_traceout!(reg[1], σˣ) # Projective measurement
observable((reg[1],reg[2]), σᶻ⊗σˣ) # Calculate an expectation
Measurements and expectation values...
julia> Z₁
|Z₁⟩
julia> ( Z₁⊗X₂+Y₁⊗Y₁ ) / √2
0.707 (|Y₁⟩|Y₁⟩+|Z₁⟩|X₂⟩)
julia> express( ( Z₁⊗X₂+Y₁⊗Y₁ ) / √2 )
Ket(dim=4)
basis: [Spin(1/2) ⊗ Spin(1/2)]
0.8535533905932736 + 0.0im
0.0 + 0.3535533905932737im
-0.49999999999999994 + 0.3535533905932737im
-0.3535533905932737 + 0.0im
julia> express( Y₁⊗Y₂, CliffordRepr() )
Rank 2 stabilizer
+ Z_
+ _Z
════
+ Y_
- _Y
════
Play with it at areweentangledyet.com
Declarative specification of "imperfections"
Discrete event scheduling
Traveling wavepackets modeling
More formalisms
More symbolic algebra
Digital twin / surrogate modeling
Better modeling and better optimization for entanglement exist
Try out QuantumClifford.jl - it is public and stable
Be an early tester for QuantumSavory.jl
Including work done by Vaishnavi Addala and Shu Ge, in coordination with Dirk Englund.
Expanding the team, hiring scientists and software engineers
Design of optical/mechanical/spin devices with CQN, Sandia, Mitre, and MIT.
Working on practical LDPC ECC in networking and computing.
Creating new tools for the entire community.