\[ \underbrace{A\otimes B\dots}_{n\text{ pairs}} \]
\[ \left.\begin{pmatrix}0\\1\\0\\\vdots\\0\end{pmatrix}\right\}\scriptsize \mathcal{O}(2^{2n}) \]
State Vector\[ \left.\begin{bmatrix}+&XX&\\+&ZZ&\\&&\ddots\end{bmatrix}\right\}\scriptsize \mathcal{O}(n\times n) \]
Stabilizer Tableau\[ \underbrace{0011\dots}_{2n \text{ bits}} \]
Our Approach\[A\otimes B\otimes D \sim\begin{bmatrix}+&XX&II&II\\+&ZZ&II&II\\ -&II&XX&II\\-&II&ZZ&II\\ +&II&II&XX\\-&II&II&ZZ\end{bmatrix} \sim \begin{bmatrix}+&XX&&\\+&ZZ&&\\ -&&XX&\\-&&ZZ&\\ +&&&XX\\-&&&ZZ\end{bmatrix} \sim \begin{pmatrix}+\\+\\-\\-\\+\\-\end{pmatrix}\]
\[\sim 0, 0, 1, 1, 0, 1\]$ p_1,\ p_2 \in \mathcal{P}_1 $ (Paulis)
$ h,\ f \in\mathcal{C}^*_1 $ (no-phase Cliffords)
$ g_0 \in Q = \mathcal{C}^*_2 / (\mathcal{C}^*_1\otimes\mathcal{C}^*_1) $
(inherently two-qubit Cliffords)
$ h_a\otimes f_a,\ h_b\otimes f_b \in S_3 $
one of the six permutations
of the {B,C,D} set
A riddle about a typical networking protocol:
You can use our fast optimizer to make a purification circuit. What are you supposed to maximize?
If you said "entanglement fidelity" you would be wrong. Can you see why?
To help, we plot the probability to succeed at teleporting vs the fidelity of raw pairs, for three different optimization targets.
$F_A$ is typical multipair fidelity $F_{out}$ is average single-pair fidelity
$F_L$ is probability for less than $\frac{d}{2}$ errors after purification
\[\begin{aligned} A\propto|00\rangle+|11\rangle\\ B\propto|01\rangle-|10\rangle\\ C\propto|01\rangle+|10\rangle\\ D\propto|00\rangle-|11\rangle \end{aligned}\]
Bell State BasisWe provide a drastically faster simulation algorithm for entanglement circuits: $\mathcal{O}(1)$ instead of $\mathcal{O}(n)$
We provide optimizers that employ the faster simulator to generate purification circuits, bespokely optimized for size- and noise-constrained hardware, better than anything else in the literature.
Through full-stack optimizations, we show that the typical figures of merit in the literature are poor choices when optimizing a complete system.
Link to our work: Addala, Ge, Krastanov, "Faster-than-Clifford Simulations of Entanglement Purification Circuits and Their Full-stack Optimization", (arXiv:2307.06354)