They can be entangled!
\[\begin{aligned}
A=|\phi_{+}\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}\\
B=|\psi_{-}\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}\\
C=|\psi_{+}\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}\\
D=|\phi_{-}\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}
\end{aligned}\]
They can be entangled!
\[\begin{aligned}
A=|\phi_{+}\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}\\
B=|\psi_{-}\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}\\
C=|\psi_{+}\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}\\
D=|\phi_{-}\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}
\end{aligned}\]
Krastanov et al.Art installation on Non-contextual Hidden Variable theories
Entanglement with Color Centers
The Color Center
Entanglement Protocols
Inherently low probability of success (DLCZ-like)
Full excitation and path erasure (Barret-Kok)
Single-photon reflection
Atom-photon gates (Duan-Kimble)
Low-probability of success codes (DLCZ-like)
Full excitation and path erasure (Barret-Kok)
Single-photon reflection
Atom-photon gates (Duan-Kimble)
Rate
only classical light
no optical excitation
DLCZ
\( \eta (1-F) \)
✅
❌
BK
\( \eta^2 \)
✅
❌
reflection
\( \eta^2 \)
❌
✅
You also need a color center that does not suffer from spectral diffusion or charge state instabilities.
If you end up with significant optical excitation, you also need a way to turn off the hyperfine coupling to the (nuclear) memory.
90% chance for
\[\begin{aligned}
A=\frac{|00\rangle+|11\rangle}{\sqrt{2}}\\
\end{aligned}\]
10% chance for a bit flip on Bob's qubit
\[\begin{aligned}
C=\frac{|01\rangle+|10\rangle}{\sqrt{2}}\\
\end{aligned}\]