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Brief (Opinionated) History of Computing Machinery
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A Roman Abacus and an Inca Quipo;

abacus in use since 2700 BCE

Babbage’s Analytical Engine, late 1800s



The Notion of Universality*
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"[...] the Analytical 

Engine weaves 

algebraical patterns just 

as the Jacquard loom 

weaves flowers and 

leaves."

Ada Lovelace

late 1800s

“The idea behind digital 

computers [... is] to carry 

out any operations which 

could be done by a human 

computer.”

Alan Turing

mid 1900s

*Universality: the notion that a computer is a general purpose problem solver that can simulate any other computer / problem solver.



Ideal Machines Can Be Difficult to Build in The Real World
Babbage never completed 

the Analytical Engine.

Many doubted that cogs 

or relays or vacuum tubes 

could ever be sufficiently 

noiseless.

Thankfully, von Neumann 

proved a “threshold 

theorem” providing a 

noise reducing “gadget”.
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A triply-redundant implementation of an otherwise unreliable operation.

“[...] The Synthesis of Reliable Organisms […]”, von Neumann, 1952



How Much Computational Power Do
the Laws of the Physical* Universe Ultimately Provide?

Some problems are 

difficult, but the universe 

still solves them.

Quantum mechanics, in 

particular, is difficult to 

simulate.
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Use a quantum 

system to 

simulate the 

quantum 

system.

*Skipping scalable analog computers and hypercomputation as unphysical.

smbc-comics.com, 2013



Quantum Computers can 
be universal! And they 
outperform* classical ones!
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*Probably...

Computable and Noncomputable, Yuri Manin, 1980

Simulating Physics with Computers, Richard Feynman, 1982

Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer, David Deutsch, 1985

Universal Quantum Simulators, Seth Lloyd, 1996



However, Imperfect Quantum Hardware is Hard to Control
even more so than Babbage’s cogs and cams

In that spirit, an Outline
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● Control and Calibration

● Purifying Resources with Imperfect Circuits



Control and 
Calibration

arxiv:1812.05120 / QST 2019
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STochastic Estimation Algorithm for DYnamical variables



How Control and Calibration Work
naive interpretation of a theorist
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Measure the model 

parameters governing the 

hardware.

Devise some control protocol, 

informed by the model.

Perform measurements 

validating the quality of 

the control protocol.

e.g. SNAP based control

or the OCT work by Reinier and Philip

or Philip and Wenlong’s error resistant control

e.g. Process Tomography or 

Randomized Benchmarking



A Quantum Process

Survey of Methods: Parameter Estimation/Evaluation
let us start with a simplified version of Process Tomography

i.e. it can be represented as a matrix 

where each row/column corresponds 

to a basis vector for the output/input.

is a linear map (super-operator)

We can use Process Tomography to 

measure all coefficients       :

1. Prepare 

2. Apply the quantum process to get

3. Measure the overlap* with       ,

which gives you

* There are some questions of orthogonality to address. 

Susceptible to State Preparation and Measurement Errors
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Survey of Methods: Parameter Estimation/Control/Evaluation
(biased and incomplete)
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Randomized 

Benchmarking

Process 

Tomography

Stochastic 

in situ 

Methods

Gate Set 

Tomography

Recurrent 

Neural Nets

1. Inefficient dense 

representation

2. Expensive

3. SPAM*-sensitive

1. Inefficient dense 

representation

2. Expensive

3. Immune to

most SPAM*

1. Only overall “scalar” 

fidelity

2. Immune to SPAM*

1. Very inefficient

2. Model independent

3. Immune to SPAM*

4. Very high quality

Phys. Rev. A 91, 052306

1. Inscrutable 

black-box model

2. Can be sparse

3. Very general

arXiv:1811.12420

Only verification, not informative on how to improve control.

*SPAM: State Preparation and Measurement errors



 Immune to SPAM*
 Sparse Efficient Representation
 Continuous (for use in optimal control)
 Saturating Information Theory Bounds
 General while still Interpretable
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We want it all!

*State Preparation and 
Measurement errors



What is a Model of Controllable Hardware?
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Model of the 

dynamics

State of 

the system

Control 

drives



Spectrum of Models
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Differential 

Equations

Neural

Networks

Recurrent Neural

Networks

Neural

ODEs

Sparse, Understandable

Susceptible to model errors

Dense, Inscrutable

What “model error”?

(Just get me more training data) 



Model Hamiltonian

Model Hamiltonian     Parameters      Control Drives
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“True” Hamiltonian                                            “True” Parameters



Model Hamiltonian
A Particular Parameterization
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Model Hamiltonian     Parameters      Control Drives

(for Q qubits)                                    (D-dimensional  vector)

M⨉(D+1) real parameters to be estimated

Predetermined 

permitted operators

(M different operators,

not spanning the entire 

space of operators)



Model Hamiltonian
General Linear Control Drives

17

Model Hamiltonian     Parameters      Control Drives

2

2Q⨉(D+1) real parameters to be estimated



Run a bunch of random control drives.
Compare the result to the model prediction.
Fudge the model parameters until they match.
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Calibration



Run a Bunch of Control Drives and Repeatedly Sample
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1. Prepare

random pulses

2. Sample the result of 

each pulse repeatedly.

3. Estimate populations 

in each basis state



Compare the Result to Prediction
Fundamentally, you can not exactly measure a quantum state.

You can estimate its population in a given basis

with repeated projective measurements.

(or a bit more generally—and more expensively—do tomography on the state)
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run 

control 

drive

phases are 

lost in 

projective 

measurement

sample from 

this distribution

0 1 0 0

Finally, compare the 

estimate of the truth 

to the prediction:



Compare Model and Measurement
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Prediction 

given the 

parameters

Measured estimate 

of the actual final 

state obtained 

from S repeated 

samples per pulse

Sum over a 

bunch of 

random 

control pulses

Current estimate 

of the hardware 

parameters

P - number of different random pulses

S - number of samples per pulse

Fundamentally, you can not exactly measure a quantum state.

You can estimate its population in a given basis

with repeated projective measurements.

(or a bit more generally—and more expensively—do tomography on the state)



Optimized Cost (P unique pulses, each ran and sampled S times)
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The actual final state

Measured estimate of the 

actual final state

The predicted final state 

given the parameters

small error large error

more samples

m
o

r
e
 
p

u
l
s
e
s

P

×

S

=

c
o

n

s
t



Stuff being directly measured

Parameter we want to know

Theoretical Limit of Calibration Fidelity
Fisher Information:
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Cramér–Rao bound:

… is additive 



“Gauge” Degrees of Freedom
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Permitted Operators (i = 1, 2 or 3):



Intrinsic State Preparation and Measurement Errors
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Intrinsic SPAM causes a bias in our estimator!



Non-unitary Evolution
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A Hamiltonian 

model is incapable of 

capturing 

decoherence.

A Lindbladian model 

can cover most of the 

dynamics.



Improving Sensitivity Through Optimal Control
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Naturally, the gradient 

descent procedure can be 

run in reverse to devise a 

control pulse for desired 

final state or another 

metric.

E.g. Fisher Information 

can be maximized.



What about Stochastic Master Equations
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Alternative 

blackbox RNN 

approach in 

arxiv:1811.12420

Unitary (Hamiltonian)   Dissipative (Lindbladian)  Weak Measurement (Backaction)

Measurement Record

Parameterization

Measurement efficiency

Dissipation strength

Oscillation frequency



Example Trajectory: Weakly measuring the excited state population 29
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The Model to which we fit
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Weak 

Measurement 

(Backaction)

Unitary 

(Hamiltonian)

Dissipative 

(Lindbladian)



Estimator performance vs Amount of measurement data
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Example Reconstructions
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1000× less 

measurement 

data required 

compared to 

RNN approaches.



Example Reconstruction (including untrained run)
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Weak Measurement Sampling Rate vs Numerical Timestep
Perfect measurement efficiency, i.e. η=1, 

implies infinite sampling rate for V!

Not usually a problem, until we try to 

integrate stiff systems...
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Stochastic Estimation Overview

● Reaching for the information theory limit of performance

● Learning the whole Hamiltonian/Lindbladian, not just a set of gates

○ Sparse Efficient Representation

○ Continuous (for use in optimal control)

○ “Experimental design” is easy to plug in

● Deals with SPAM and non-unitary errors

● General while still Interpretable

● Embarrassingly simple implementation
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Outline

● Control and Calibration

● Purifying Resources with Imperfect Circuits
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Purifying Resources 
through

Imperfect Circuits

arxiv:1712.09762 / Quantum 2019
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Real Bell Pairs are Imperfect
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Purification of Imperfect Resources

Four possible Bell states A, B, C, and D.

Typically an entanglement generator would not 

provide perfect pairs, rather (for instance):

A at 90%

B, C, and D at 3.3%

We use two such imperfect Bell pairs to distil one 

higher quality pair.
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Purification

Bob’s side of the circuit.

Alice does the same to her 

“half pairs”.
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Alice’s side of the circuit.

Bell pair to

be purified.

Sacrificial

Bell pair.



Purification

AA

AB

AC

AD

others

Bob’s side of the circuit.

Alice does the same to her 

“half pairs”.

81%

 3%

 3%

 3%

…

Tracing over the second pair 

returns the same quality pair as 

the one we started with.
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AA remains AA

DD becomes AD

etc

Trace over the second pair, 

selecting only A or D.

Result:

93% A in the first pair.



The Initial State
Single pair:

A - F
B - q
C - q
D - q

e.g. F=90% and q=3.3%
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Two pairs:

AA - FF
AB - Fq
AC - Fq
AD - Fq
BA - Fq
BB - qq
BC - qq
BD - qq
CA - Fq
CB - qq
CC - qq
CD - qq
DA - Fq
DB - qq
DC - qq
DD - qq



Restating in the form of permutations and selections
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CNOT:
AA⇨AA
AB⇨DB
AC⇨AC
AD⇨DD
BA⇨BC
BB⇨CD
BC⇨BA
BD⇨CB
CA⇨CC
CB⇨BD
CC⇨CA
CD⇨BB
DA⇨DA
DB⇨AB
DC⇨DC
DD⇨AD

Case study:

CNOT as

a permutation

on the Bell basis

Coincidence Z

measurement

as selecting half

of the set

Coincidence Z:
take A and DAA : FF

AB : Fq
AC : Fq
AD : Fq
BA : Fq
BB : qq
BC : qq
BD : qq
CA : Fq
CB : qq
CC : qq
CD : qq
DA : Fq
DB : qq
DC : qq
DD : qq

⇨
⇨
⇨
⇨
⇨
⇨
⇨
⇨
⇨
⇨
⇨
⇨
⇨
⇨
⇨
⇨

FF
qq
Fq
qq
qq
qq
Fq
qq
qq
qq
Fq
qq
Fq
Fq
qq
Fq



Why don’t we pick a better permutation?
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Purification-enabling Gates
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648 purifying

local permutations

(CNOT/SWAP 

based)

Unitary Operations

Clifford Operations

Bell Permutations
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Useful Permutation Subgroups and Cosets
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Making Bigger and Better Circuits
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Mutations Creating Offspring Circuits
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Optimized Purification (Genetic Algorithms)



A Hundred Generations Later (5min laptop time)
For a given error model and

specified error parameters

quickly find near-optimal

purification circuits.

Various optimizations

related to the structure of

the problem were implemented.

                                                          Real-time trace of the optimization process.
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Better Than Prior Art
Breadth 3, simulated for

● Initial Bell Pair Fidelity 0.9

● Local Operations Fidelity 0.99

● Depolarization Error Model

Available at

qevo.krastanov.org

Circuits From:
- Nickerson, Nature Comm. 4, 1756 (2014)
- Deutsch, PRL 77, 2818 (1996)
- Dür, PRA, 59, 169 (1999)
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A Particular Example
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One of Our Circults

One of the Best Competitors (STRINGENT)
Competitor

Ours



Example with a Communication Qubit
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Nigmatulin et al:

- 6 raw Bell pairs

- 2.46% infidelity

Our optimized 

circuit:

- 5 raw Bell pairs

- 1.77% infidelity



Initialization vs Operations’ Infidelity
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Diminishing Returns
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Optimized Circuits Overview
The optimizer is giving the best known circuits

● They are customized to your hardware’s error model

● The software also provides:

○ Monte Carlo resource estimates

○ Exact symbolic evaluation for the infidelities

○ code and examples at qevo.krastanov.org
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Speculative Outlook
Bringing the two toolkits together:

- The circuit optimization required working efficiently with noisy Clifford circuits

- The parameter estimation is not yet scalable, as it requires quantum simulations

However, with some finite effort we can:

- Design Clifford gates through optimal control over the estimated model

- Run a random circuit of such imperfect Clifford gates

- Perform infidelity estimation across this entire pipeline

- Thus the parameter estimation would run efficiently even for larger systems
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Thanks to Collaborators, Classmates, and Friends!
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And thank you, Liang, for mentoring me and for 
enabling my teaching and outreach interests!

To colleagues and collaborators 

for working together, expanding 

our knowledge of the world.

And to friends and classmates, for 

supporting each other, and 

making life at Yale so much 

better.

High schoolers building motion-sensing LED bracelets (Eng. Day 2017)

and learning the math and CS behind drawing fractals (Math Art 2018).



Questions?
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