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Introduction
To  redundantly  encode
information one can use a
system of linear constrains
(i.e. constraining the parity)
on  the  physical  qubits,  as
done in stabilizer codes (or
their classical counterpart -
linear  codes).  These
constraints are represented
as  a  matrix  equation,  or
equivalently  as  the

corresponding  graph  connecting  each  "check"  
(constraint) to its "variables"  (qubits whose parity is
constrained).
A  substantial  challenge  presents  itself  when  one
attempts to decode a code after an error has occurred.
In  general,  this  is  an infeasible  NP-complete  problem,
but in many cases the particular code would have some
additional structure that permits the creation of a smart
efficient decoding algorithm.
We present a method of creating a decoder for any
stabilizer code, by training a neural network to invert
the  syndrome-to-error  map  for  a  given  error
model[1]. We evaluate the performance of our decoder
when applied to the Toric Code.

Example: The Toric Code and its MWPM
Decoder

We  will  use
the  Toric
code  as  a
benchmark
for  our
otherwise
general
protocol. In it
the  physical
qubits  are
laid  out  in  a
lattice,  and
the  parity
checks act on cells of the lattice. After interpreting non-
trivial  syndromes  as  pairs  of  particles,  decoding
becomes a problem of matching and annihilating those
pairs, for instance by minimizing the total path they have
to travel  as done by Minimal  Weight  Perfect  Matching
(MWPM).
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Neural Networks 101
Neural  Networks  are  exceedingly  good  at  fitting
high-dimensional  nonlinear  functions  to  given
training data The function to be "learned" is expressed
as a network of "neurons" parametrized by the strengths
of the connections between neurons.

A  real  neuron  and  a  model  of  a  neuron  used  in
artificial neural networks. The incomming signals are
summed, passed through a nonlinearity and the output
"activation"  is  sent  to  the  next  layer.  The  bias   and
numerous connection weights   are  the  optimization
parameters during fitting/training.

Neural Networks are created from multiple layers of
connected neurons.  The  first  layer  is  the  input.  The
"activation values" are propagated through the network
and  the  last  layer  is  the  output.  The  strength  of  the
connections  between  neurons  is  what  is
trained/optimized. Image credit: [2].
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The Neural Network Quantum Error Correcting Code Decoder
Decoding is deducing from a syndrome measurement 
most probable error  that caused it. For a given code and
error  model,  we generate a large sample of  errors and
compute the corresponding syndromes. We use that data
to train a neural network to do the mapping from  to .
An important caveat is the need to interpret the output of
the neural network as a probability distribution - it is not a
discrete yes/no answer, rather a probability that an error
occurred given the syndrome.
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Our  decoder  significantly  outperforms  MWPM
without having hard-coded knowledge of its lattice
structure.  The  threshold  is  much  better,  and  the
properly corrected fraction of codewords is higher.

Note: Efficient Sampling from the Neural
Network

measure syndrome s

run neural network
 to evaluate distribution

E=DECODE(s)

take a sample from
the distribution E
e=SAMPLE(E)

evaluate the syndrome
scheck

corresponding to e
scheck=H.e

is
scheck=s

?

e is the error that occured

Yes

resample from E the
components of  e

connected to nodes
where scheck≠s

No

For a given syndrome , the network's
output  is evaluated and interpreted
as  a  list  of  error  probabilities  from
which  an  array   (whether  an  error
occurred)  is  sampled.  If  the  guess 
does not produce the syndrome  we
resample, but only the qubits taking
part  in  the  stabilizer  measurement
corresponding  to  the  incorrect

elements of the syndrome.
After  a  set  number  of
iterations,  we give up.  For
codes  of  more  than  200
qubits,  this  protocol  can
become impractical.
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Benchmark: Comparing to Other Decoders
Our  neural  decoder's  threshold  (16.4%)  compares
favorably to renormalization group decoders[3] (15.2%)
and outperforms MWPM. Only a renormalization sparse
code  decoder[3]  reaches  a  similar  threshold.  These
decoders  have  been  hand-crafted  for  the  Toric  Code,
while our design can be applied to other codes. There
are  a  number  of  other  attempts  to  employ  neural
networks  as  decoders,  notably[4],  but  they  do  not
outperform MWPM.

Conclusions and Outlook
Our  architecture  provides  a  practical  high-fidelity
decoder  for  Toric  codes  of  less  than  200  qubits,
outperforming most alternatives. Exciting developments
in the near future would be the use of more advanced
sampling  algorithms  employing  recurrent  neural  nets,
and  on  the  other  hand,  applying  this  architecture  to
promising LDPC codes that do not yet have any known
decoders.
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