
Neural Network Decoders
April 2017, Stefan Krastanov, Liang Jiang

1



Goal:
Given a syndrome deduce 
the error (efficiently).
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Error Correcting Codes (ECC) 101
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Classical Binary ECC
Use N unreliable physical bits

(susceptible to flips)

to represent K reliable logical bits

by imposing N-K constraints.
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Use the syndrome (i.e. check which 

constraints are broken) to deduce what 

error happened (and reverse it).

Caveat: multiple errors can lead to the 

same syndrome - finding the most probable 

is the best you can do.

Disclaimer: erasure errors are detectable (less severe) - we will not worry about them.



Error Model for a Qubit
Slightly more complicated than a bit…

X, Z, and Y errors can happen.
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Y is equivalent to both X and Z happening.

We need two bits per qubit to track errors.



Decoding (Correcting) the Code
● e to s is easy

● s to e is impossible (it is one to many relation)

● s to most probable e is difficult (infeasible, i.e. NP complete)

● s to fairly probable e if there is additional structure can be “easy”
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Example of Additional Structure - Toric Code
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Toric Code cont. - memory lifetime vs physical qubit quality

8



Neural Networks 101
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Valiant’s Theorem: Learning “might” be “feasible”
A baby is learning a language by listening:

x - a sentence

D - the set of all possible (correct or not)

    sentences

f - a boolean function saying whether

    a sentence is grammatically correct

h - an approximation of f that the baby

    is trying to learn

ε - the fraction of misclassified sentences

m (defined above) samples are sufficient:

C - the set of all possible h

δ - (the probability of learning an h with 

misclassification rate higher than ε)
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A Neuron
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A Nicer Neuron
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Layered Neural Network
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Nonlinearity (a.k.a. Activation Function)
Sigmoid

(Fermi 

distribution)

tanh

ReLU
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Training
● Gradient descent with automated analytical gradients.

● Training data sets need at least millions of data points.

● Too slow to evaluate the gradient on the entire training set:

○ Use batches (evaluate on small subset of the training set)

○ Use epochs (iterate through the training set multiple times)
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Applying Neural Nets to Decoding
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Reversal of a one-way function
● Generate millions of errors e (for a toric code of distance L).

● Compute corresponding syndromes s.

● Train the network to learn the reverse s → e mapping.
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Hyperparameter Search
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The details of the 

plot do not matter. 

We are just 

showing off how 

much work we did.



Hyperparameter Search Results
● One hidden layer of size 4x the input layer

(after that we reach diminishing returns)

● Hidden layer activation: tanh

● Output layer activation: sigmoid

● Loss: binary crossentropy
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The Output of the Neural Network
● Neural Networks are continuous (even differentiable) maps.

● The output is a real number between 0 and 1.

● The training data is binary (error either happened or not).

● How do we use decide whether the Neural Network is predicting an error or not?
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Neural Networks do not 
provide answers, rather 
probability distributions 
over possible answers!
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At least in the fairly 

common architecture we 

are using.

Using buzzwords is fun, but 

for the rest of the 

presentation you can think 

of neural networks as the 

easiest-to-implement black 

box to deduce a conditional 

probability distribution 

given some data.



Sampling the Neural Network
● Measure syndrome s

● From the neural network get

probability distribution over possible errors

P

S

(e) (we are not using the neural network after this point)

● Sample an e from P

● You can do even better - you can check whether

s

new

=s+He is trivial

● If not, then continue sampling until it is (or you give up)
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Application: Distance 5 Toric Code at 10% physical error rate
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It beats Minimal Weight 

Perfect Matching (the 

black line) in two ways:

● It knows about 

correlations 

between X and Z

● It gives the most 

probable error, not 

the one with 

“minimal free 

energy”



Slightly Smarter Sampling
If s

new

=s+He is not trivial, resample only the “broken” nodes.

Poorman’s version of

“hard decision”

belief propagation.
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Smarter Sampling (Message Passing / Belief Propagation)
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More Layers
26



Bigger Codes
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MWPM 7

MWPM 9

MWPM 11



Bigger Codes
(naive sampling)

28

MWPM 7

MWPM 9

MWPM 11



Further Reading (and sources for some intro graphics)

● Works amazingly well on small instances of the Toric Code

● With ConvNets or RG algorithms it should work on large Toric Codes

● Coupled to intelligent sampling and graph algorithms it should work great on big 

LDPC codes. 

● The network can be recurrent (have a feedback loop) in order to be used beyond 

single shot decoding.
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Conclusions and Work-in-progress

● Stanford CS231 by Andrej Karpathy cs231n.github.io

● Keras’s software package documentation keras.io

● “The Unreasonable Effectiveness of Recurrent Neural Networks”, A. Karpathy

● “Understanding LSTM Networks”, Chris Olah

● “An Intuitive Explanation of Convolutional Neural Networks”, Ujjwal Karn

● “A theory of the learnable”, Valiant

http://cs231n.github.io/
http://keras.io/


TODO
For Toric Code 

● Use the lattice structure: RG or ConvNet inspired decoders (but is it worth it?)

● Get a threshold

For LDPC Codes (and Toric Codes)

● See how well the current approach works on them

● Look into the statistics of the NN output (are correlations preserved)

● See whether belief propagation can be seeded with the learnt distribution

● Use a recurrent or generative NN (anything that remembers correlations)
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The Loss: Binary Crossentropy
Comparing probability distribution p to probability distribution q:

Using this as the loss (i.e. training goal to be minimized) reinforces the interpretation 

of the result as a “learned” conditional probability distribution. 
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Output Stats
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