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Goal:
Given a syndrome deduce 
the error (efficiently).
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Error Correcting Codes (ECC) 101
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Classical Binary ECC
Use N unreliable physical bits

(susceptible to flips)

to represent K reliable logical bits

by imposing N-K constraints.
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Use the syndrome (i.e. check which 

constraints are broken) to deduce what 

error happened (and reverse it).

Caveat: multiple errors can lead to the 

same syndrome - finding the most probable 

is the best you can do.



Error Model for a Qubit
Slightly more complicated than a bit…

X, Z, and Y errors can happen.
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Y is equivalent to both X and Z happening.

We need two bits per qubit to track errors.



Decoding (Correcting) the Code
● e to s is easy

● s to e is impossible (it is one to many relation)

● s to most probable e is difficult (infeasible / NP-hard)

● s to fairly probable e if there is additional structure can be “easy”

6



Example of Additional Structure - Toric Code
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Neural Networks 101
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Different approach to ECC with Neural Networks suggested by:

R35.00002 : A neural decoder for topological codes - Torlai, Melko

Other interesting uses of Neural Networks for quantum many-body theory:

Solving the Quantum Many-Body Problem with Artificial Neural Networks - Carleo, Troyer (arXiv:1606.02318)



Neuron
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A Nicer Neuron



Layered Neural Network
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Neural Networks are “trained”: 
You provide training 
input/output pairs, and train 
the network to “learn” the 
input/output mapping.
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Applying Neural Nets to Decoding
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Reversal of a one-way function
● Generate millions of errors e (for a toric code of distance L).

● Compute corresponding syndromes s.

● Train the network to learn the reverse s → e mapping.
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The Output of the Neural Network
● Neural Networks are continuous (even differentiable) maps.

● The output is a real number between 0 and 1.

● The training data is binary (error either happened or not).

● How do we decide whether the Neural Network is predicting an error or not?

14

…
 

…
 

…
 

fully 

connected

fully 

connected

input layer - syndrome                                     output layer - error

(L

2

 neurons per X or Z error type)                  (2L

2

 neurons per X or Z error type)



Neural Networks do not 
provide answers, rather 
probability distributions 
over possible answers!
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At least in the fairly 

common architecture we 

are using.

Using buzzwords is fun, but 

for the rest of the 

presentation you can think 

of neural networks as the 

easiest-to-implement black 

box to deduce a conditional 

probability distribution 

given some data.



Sampling the Neural Network
● Measure syndrome s

● From the neural network get

probability distribution over possible errors

P

S

(e)

● Sample an e from P

● You can do even better - you can check whether

s

new

=s+He is trivial

● If not, then continue sampling until it is (or you give up)
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Application: Distance 5 Toric Code at 10% physical error rate
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It beats Minimal Weight 

Perfect Matching (the 

black line) in two ways:

● It knows about 

correlations 

between X and Z

● It gives the most 

probable error, not 

the one with 

“minimal free 

energy”



Smarter Sampling (Message Passing / Belief Propagation)
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More Layers
19



Bigger Codes
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Further Reading (and sources for some intro graphics)

● Works amazingly well on small instances of the Toric Code

● With ConvNets or RG algorithms it should work on large Toric Codes

● Coupled to intelligent sampling and graph algorithms it should work great on big 

LDPC codes. 

● The network can be recurrent (have a feedback loop) in order to be used beyond 

single shot decoding.
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Conclusions and Work-in-progress

● Stanford CS231 by Andrej Karpathy cs231n.github.io

● Keras’s software package documentation keras.io

● “The Unreasonable Effectiveness of Recurrent Neural Networks”, A. Karpathy

● “Understanding LSTM Networks”, Chris Olah

● “An Intuitive Explanation of Convolutional Neural Networks”, Ujjwal Karn

● “A theory of the learnable”, Valiant

stefan.krastanov@yale.edu 

Work not published yet but I 

would be happy to discuss 

and share resources.

http://cs231n.github.io/
http://keras.io/
mailto:stefan.krastanov@yale.edu
mailto:stefan.krastanov@yale.edu


Hyperparameter Search Results
● One or more hidden layers of size 4x the input layer

(after that we reach diminishing returns)

● Hidden layer activation: tanh

● Output layer activation: sigmoid

● Loss: binary crossentropy (to be discussed in more detail)
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