
Neural Network Decoders for
Quantum Error Correcting Codes

Stefan Krastanov, Liang Jiang

1

Goal:
Given a syndrome deduce
the error (efficiently).

2

Error Correcting Codes (ECC) 101

3

Classical Binary ECC
Use N unreliable physical bits

(susceptible to flips)

to represent K reliable logical bits

by imposing N-K constraints.

4

Use the syndrome (i.e. check which

constraints are broken) to deduce what

error happened (and reverse it).

Caveat: multiple errors can lead to the

same syndrome - finding the most probable

is the best you can do.

Error Model for a Qubit
Slightly more complicated than a bit…

X, Z, and Y errors can happen.

5

Y is equivalent to both X and Z happening.

We need two bits per qubit to track errors.

Decoding (Correcting) the Code
● e to s is easy

● s to e is impossible (it is one to many relation)

● s to most probable e is difficult (infeasible / NP-hard)

● s to fairly probable e if there is additional structure can be “easy”

6

Example of Additional Structure - Toric Code
7

Neural Networks 101

8

Different approach to ECC with Neural Networks suggested by:

R35.00002 : A neural decoder for topological codes - Torlai, Melko

Other interesting uses of Neural Networks for quantum many-body theory:

Solving the Quantum Many-Body Problem with Artificial Neural Networks - Carleo, Troyer (arXiv:1606.02318)

Neuron

9

A Nicer Neuron

Layered Neural Network

10

Neural Networks are “trained”:
You provide training
input/output pairs, and train
the network to “learn” the
input/output mapping.

11

Applying Neural Nets to Decoding

12

Reversal of a one-way function
● Generate millions of errors e (for a toric code of distance L).

● Compute corresponding syndromes s.

● Train the network to learn the reverse s → e mapping.

13

…

…

…

fully

connected

fully

connected

input layer - syndrome output layer - error

(L

2

 neurons per X or Z error type) (2L

2

 neurons per X or Z error type)

The Output of the Neural Network
● Neural Networks are continuous (even differentiable) maps.

● The output is a real number between 0 and 1.

● The training data is binary (error either happened or not).

● How do we decide whether the Neural Network is predicting an error or not?

14

…

…

…

fully

connected

fully

connected

input layer - syndrome output layer - error

(L

2

 neurons per X or Z error type) (2L

2

 neurons per X or Z error type)

Neural Networks do not
provide answers, rather
probability distributions
over possible answers!

15

At least in the fairly

common architecture we

are using.

Using buzzwords is fun, but

for the rest of the

presentation you can think

of neural networks as the

easiest-to-implement black

box to deduce a conditional

probability distribution

given some data.

Sampling the Neural Network
● Measure syndrome s

● From the neural network get

probability distribution over possible errors

P

S

(e)

● Sample an e from P

● You can do even better - you can check whether

s

new

=s+He is trivial

● If not, then continue sampling until it is (or you give up)

16

Application: Distance 5 Toric Code at 10% physical error rate
17

It beats Minimal Weight

Perfect Matching (the

black line) in two ways:

● It knows about

correlations

between X and Z

● It gives the most

probable error, not

the one with

“minimal free

energy”

Smarter Sampling (Message Passing / Belief Propagation)
18

More Layers
19

Bigger Codes
20

MWPM 7

MWPM 9

MWPM 11

Further Reading (and sources for some intro graphics)

● Works amazingly well on small instances of the Toric Code

● With ConvNets or RG algorithms it should work on large Toric Codes

● Coupled to intelligent sampling and graph algorithms it should work great on big

LDPC codes.

● The network can be recurrent (have a feedback loop) in order to be used beyond

single shot decoding.

21

Conclusions and Work-in-progress

● Stanford CS231 by Andrej Karpathy cs231n.github.io

● Keras’s software package documentation keras.io

● “The Unreasonable Effectiveness of Recurrent Neural Networks”, A. Karpathy

● “Understanding LSTM Networks”, Chris Olah

● “An Intuitive Explanation of Convolutional Neural Networks”, Ujjwal Karn

● “A theory of the learnable”, Valiant

stefan.krastanov@yale.edu

Work not published yet but I

would be happy to discuss

and share resources.

http://cs231n.github.io/
http://keras.io/
mailto:stefan.krastanov@yale.edu
mailto:stefan.krastanov@yale.edu

Hyperparameter Search Results
● One or more hidden layers of size 4x the input layer

(after that we reach diminishing returns)

● Hidden layer activation: tanh

● Output layer activation: sigmoid

● Loss: binary crossentropy (to be discussed in more detail)

22

…

…

…

fully

connected

fully

connected

