
Universal Control of an Oscillator with Dispersive Coupling to a Qubit
Stefan Krastanov, Victor V. Albert, Chao Shen, Chang-Ling Zou, Reinier W. Heeres, Brian Vlastakis, Robert J. Schoelkopf, Liang Jiang

Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA

Ancient History and
Recent Advances

In 1995 Law and Eberly devised an efficient pro-
tocol for the preparation of an arbitrary state
in an oscillator-qubit system governed by the
Jaynes-Cummings Hamiltonian [1]. However the
more complex problem of implementing arbitrary
unitary operations remains an outstanding chal-
lenge. Even with recent advances [2][3][4], proto-
cols suffer from various inefficiencies and lack ex-
perimental implementations. Meanwhile, devel-
opment of superconducting circuits in the strong
dispersive regime opens new possibilities for ef-
ficient universal control of the oscillator that we
exploit in the present protocol.

What is Universal Quantum
Control?

Having universal control of the system implies the
ability to perform any unitary operation on it with-
out the need to know its initial state (i.e. apply
any unitary matrix to the state of the system). It
is a much more general capability than the usual
state preparation routines where we constrain only
one column of the unitary matrix (taking the ground
state to the target state).

Dispersively Coupled Qubit

The Hamiltonian of the dispersively coupled qubit-
oscillator system is

Ĥ = (ωq − χn̂) | e〉〈e | +Ĥ1 + Ĥ2, (1)
with time-dependent drive of the oscillator

Ĥ1 = ε (t) â† + h.c., (2)
and time-dependent drive of the qubit

Ĥ2 = Ω (t) eiωqt |e〉〈g| + h.c., (3)
where ωq is the qubit frequency; â† and â are the
raising and lowering operators; n̂ = â†â; χ is the
dispersive coupling; Ω(t) and ε(t) are the time-
dependent drives of the qubit and the oscillator.

Basic "Buildingblock" Operations Available in this System
The SNAP Gate

Figure 1: Energy level diagram of the qubit-oscillator system in
the rotating frame of the oscillator. A weak displacement op-
eration (red dashed arrows) couples the states |g, n− 1〉 and
|g, n〉 for all n. The SNAP gate (blue solid arrows) can si-
multaneously accumulate different Berry phases {θn} to states
{|g, n〉}. The Berry phase θn is proportional to the enclosed
shaded area in the corresponding Bloch sphere, achieved by res-
onant microwave pulses with frequency ωq − nχ (blue traces).

We will control only the ground subspace of the
system {|g, n〉}n and use the excited subspace
{|e, n〉}n as an auxiliary and do not keep any
population in it between operations.
Ĥ1 provides us with a displacement operation:

D̂(α) = exp
(
αâ† − α∗â

)
. (4)

Ĥ2 provides us with selective on number of
photons Rabi oscillations if |Ω(t)| � χ. Each of
the two-level subsystems can move on an arbitrary
path on the Bloch sphere. On return to the ground
state each subsystem will acquire a Berry phase.
The resulting operation is the SNAP gate
(Selective on Number Arbitrary Phase gate):

Ŝ(~θ) =
∞∑
n=0

eiθn | n〉〈n |, (5)

where ~θ = {θn}∞n=0 is the list of phases.

Implementing a Rotation between
Two Neighboring States

The operation
V̂n = D̂

α
(n)
1
R̂n D̂α

(n)
2
R̂n D̂α

(n)
3
≈ e[−iθ(|n〉〈n+1|+|n+1〉〈n|)]

where R̂n = −
n∑

n′=0
|n′〉〈n′| +

∞∑
n′=n+1

|n′〉〈n′|

performs a high fidelity rotation of a fixed angle in
{|n〉 , |n + 1〉}. R̂n is a SNAP gate that changes the
sign of the first n states and commutes with D̂α over
all but the {|n〉 , |n + 1〉} subspace.

Final state is a 
superposition
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Figure 2: Pictorial representation of the steps implementing a
rotation between |0〉 and |1〉. The horizontal axis enumerates
number states. The area of the circles is the population in the
given state. The arrow is the phase.

Implementing an Arbitrary
Unitary Operation

Having SO(2) rotation operations (like V̂n) and
U(1) phase inducing operations (like Ŝ(~θ)) we can
chain them in any number of ways and efficiently
build any unitary operation.

Figure 3: To test the entire protocol, we randomly selected
"target" unitary operations from the U(N) group (N from 2 to
6) and let our algorithm design control pulses that implement
them with high fidelity F = 1

Nc

∣∣∣Tr (Û †constructÛtarget
)∣∣∣. Each

point represents one run of our algorithm trying to implement a
randomly selected "target" unitary (two colors for two different
optimization strategies).

Conclusions and
Outlook

The dispersive Hamiltonian permits selective con-
trol (the SNAP gate) which in turn leads to our
protocol for universal control, which is both:
• efficient, requiring only O(N 2/χ) time to
perform an N ×N unitary operation;

•high fidelity, performing consistently at
fidelities above 0.999 and permitting efficient
fidelity-time tradeoffs in case higher fidelities
are required. For target infidelity ε it requires
only O(N 3/

√
ε) steps.

In addition:
•For "sparse" matrices or sparse "states" the
protocol can be further optimized by skipping
unnecessary operations. For instance we can
prepare a number state |n〉 in only O(

√
n)

operations instead of the usual O(n).
•The protocol can be generalized to perform a
unitary operation on the entire Hilbert space
instead of being restricted to working on only
the {|g, n〉}n subspace.
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