UNIVERSAL CONTROL OF AN OSCILLATOR WITH DISPERSIVE COUPLING TO A QUBIT

arXiv preprint 1502.08015

Stefan Krastanov, Victor V. Albert, Chao Shen, Chang-Ling Zou, Reinier W. Heeres, Brian Vlastakis, Robert J. Schoelkopf, and Liang Jiang. **APS March Meeting, 2015**

Acknowledgement: Michel Devoret, Steven Girvin, Zaki Leghtas,

Mazyar Mirrahimi, Andrei Petrenko, Matt Reagor, and many others from the

YQI.

OUTLINE

OUTLINE

- A New Phase-rotation Gate for a Cavity-Qubit System
- Performing Arbitrary Unitary Operations on the Cavity
- For an experimentalists view:
 - Y39.00005 (by Reinier Heeres in 30 minutes) and arXiv 1503.01496
- See also:
 - (theory) Law & Eberly (PRL 76, 1055)
 - (theory) Mischuck & Mølmer (PRA 87, 022341)
 - (theory) Santos (PRL 95, 010504)
 - (experiment) Leibfried et al. (Rev Mod Phys 75, 281)
 - (experiment) Hofheinz et al. (Nature 459, 546)

THE SYSTEM AND THE DRIVES

Cavity (oscillator) coupled to a qubit (a two-level system)

$$\hat{{H}}_0 = \omega_q \mid e
angle \langle e \mid + \omega_c \hat{n} - \chi \mid e
angle \langle e \mid \hat{n} \mid$$

Cavity (oscillator) coupled to a qubit (a two-level system)

$$\hat{H}_0 = \pmb{\omega_q} \mid \pmb{e}
angle \langle \pmb{e} \mid + \pmb{\omega_c} \hat{n} - \chi \mid e
angle \langle e \mid \hat{n} \mid e \rangle$$

Cavity (oscillator) coupled to a qubit (a two-level system)

$$\hat{{H}}_0 = \omega_q \mid e
angle \langle e \mid + \omega_c \hat{n} - \chi \mid e
angle \langle e \mid \hat{n} \mid$$

Cavity (oscillator) coupled to a qubit (a two-level system)

 $\hat{H}_0 = \omega_q \mid e
angle \langle e \mid + \omega_c \hat{n} - oldsymbol{\chi} \mid oldsymbol{e}
angle \langle e \mid \hat{n}$

THE DRIVES - CONTROLLING THE CAVITY

$$\hat{H}_{cavity}=arepsilon\left(t
ight)e^{i\omega_{c}t}\hat{a}^{\dagger}+h.\,c.$$

THE DRIVES - CONTROLLING THE QUBIT $\hat{H}_{qubit} = \Omega(t) e^{i\omega_q t} |e\rangle \langle g| + h.c.$ Selective on the number of photons: $\Omega(t) = \Omega e^{-in\chi t}$ with $\Omega \ll \chi$

'SNAP' GATE

Selective on Number Arbitrary Phase $|g,n
angle o e^{i heta_n} ~|g,n
angle$ $\hat{S}_n~(heta_n)=e^{i heta_n|n
angle\langle n|}$

'SNAP' GATE

$Selective \ on \ Number \ Arbitrary \ Phase$

On one two-level subsystem:

$$ullet \, \hat{{S}}_n \left(heta_n
ight) = e^{i heta_n |n
angle \langle n|}$$

On all two-level subsystems at once:

$$ullet$$
 $\hat{S}\left(ec{ heta}
ight)$ $=\sum_{n=0}^{\infty}e^{i heta_{n}}\mid n
angle\langle n
angle$

UNIVERSAL CONTROL BY COMBINING SNAPS AND DISPLACEMENTS

PROOF OF UNIVERSALITY

• Displacement: $\hat{D}(lpha) = \exp\left(lpha \hat{a}^{\dagger} - lpha^{*} \hat{a}
ight)$

• SNAP Gate:
$$\hat{S}\left(ec{ heta}
ight) \,= \sum_{n=0}^{\infty} e^{i heta_n} \mid n
angle \langle n \mid$$

The group commutator of SNAP gates and Displacements can couple any neighboring pair of number states:

$$\hat{D}(\epsilon) \hat{S}(ec{ heta}_\epsilon) \hat{D}(-\epsilon) \hat{S}(-ec{ heta}_\epsilon) \ pprox \exp{(i\epsilon^2 \sqrt{n+1}\mid n} \langle n+1\mid +h.\,c.\,)$$

for some fixed n and an appropriate SNAP gate.

- See also:
 - Lloyd & Braunstein (PRL 82, 1784)

EXPLICIT ALGORITHM - N TO N+1

How to perform $\ket{n} o \cos(heta) \ket{n} + \sin(heta) \ket{n+1}$?

EXPLICIT ALGORITHM - N TO N+1 $\hat{U}_n = \hat{D}(\alpha_1)\hat{R}_n\hat{D}(\alpha_2)\hat{R}_n\hat{D}(\alpha_3)$ $\hat{R}_n = -\sum_{n'=0}^n |n'\rangle\langle n'| + \sum_{n'=n+1}^\infty |n'\rangle\langle n'|$

UNIVERSAL CONTROL

Use the 2D rotations to prepare each column of the matrix one by one.

N-BY-N UNITARY MATRIX

We want to construct \hat{U}_{target}

$$\hat{U}_{target}^{-1} = egin{bmatrix} \hat{W}_{n imes n} & 0 \ \hline 0 & Id \end{bmatrix}$$

N-BY-N UNITARY MATRIX - REMOVING A Column

Chain N-1 2-dimensional rotations:

$$\hat{V}_{n-1,n} \dots \hat{V}_{1,2} \hat{S}_n \hat{U}_{target}^{-1} = egin{bmatrix} rac{\hat{W}_{n-1 imes n-1} & 0}{0 & 1} & 0 \ rac{0}{0} & I & I \end{pmatrix}$$

N-BY-N UNITARY MATRIX

We repeat the procedure for all columns optimizing the fidelity

$$F = \left| rac{1}{N_{cutoff}} \, Tr\left(\hat{U}^{\dagger} \hat{U}_{target}
ight)
ight|$$

N-BY-N UNITARY MATRIX

Fidelity for a random sample of unitary matrices:

SUPER EFFICIENT FOCK STATE PREPARATION

- Displace to coherent state $|lpha
 angle = D(lpha = \sqrt{n}) \mid 0
 angle$
- Use $\mathcal{O}(\sqrt{n})$ rotations to "fold" it into \ket{n}

TALLY THE COST

- To perform an arbitrary N-by-N unitary matrix = $\mathcal{O}(N^2)$ gates neccessary
- To prepare a state with an N-dimensional cutoff:
 - $\mathcal{O}(N)$ gates neccessary
 - $\mathcal{O}(\sqrt{N})$ gates neccessary for "sparse" states

ASYMPTOTIC FIDELITY

Consider again 2D rotations and look at small θ :

ASYMPTOTIC FIDELITY

We can prove #gates $\propto \frac{N^3}{\sqrt{\mathrm{infid}}}$ Time $\propto \frac{N^3}{\sqrt{\mathrm{infid}}} \frac{1}{\chi}$

Compare to Law & Eberly (PRL 76, 1055): Only State Preparation

Compare to Mischuck & Mølmer (PRA 87, 022341): Universal Control at time $\propto \frac{N^{18.5}}{\text{infid}^3} \frac{1}{g}$

CONCLUSION

CONCLUSION

arXiv preprint **1502.08015** (and experiment at **1503.01496**)

- Efficient State Preparation
 - Including an Optimization for Fock States
- Efficient Universal Control
 - Satisfactory at "first-pass" level
 - Remains Efficient in the Asymptotic Regime
- People are Already Implementing it in Schoelkopf's group at Yale
 - Y39.00005 (by Reinier Heeres in 20 minutes)